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For many species, the population-mean body size increases with latitude. Although heat conservation and starva-
tion resistance are frequently invoked to explain latitudinal clines, these explanations seem incompatible with the 
natural history of turtles, which also increase in size with latitude. We collate the population-mean body size for 
nearly 100 populations of North American freshwater turtles belonging to seven species. We test the hypothesis that 
temperature–size relationships in turtles are driven by strong seasonality in the north, which leads to maturation 
at a larger size and the production of relatively fewer, larger clutches per season. Our results, however, do not sup-
port the seasonality hypothesis. We present two new hypotheses that can explain the generality of temperature–size 
responses in chelonians. First, oxygen consumption is temperature sensitive, placing a premium on small size in 
warm aquatic environments, because smaller size reduces total oxygen demand during activities requiring submer-
gence. Second, overwintering physiology of turtles might drive size clines, because a decrease in mass-specific meta-
bolic rate with size might result in a disproportionate increase in the capacity of large individuals to buffer lactic acid 
in anoxic conditions. The pursuit of a general explanation for temperature–size relationships in chelonians would 
benefit from comparing temperature–size responses between aquatic and terrestrial species.

ADDITIONAL KEYWORDS: Bergmann’s rule – cline – oxygen limitation – reproductive cycle – temperature–
size rule.

INTRODUCTION

Temperature has strong and predictable effects on 
body-size evolution (Smith, Betancourt & Brown, 
1995; Moran & Woods, 2012; Lawson & Weir, 2014). 
In general, there is a negative relationship between 
body size and environmental temperature within 
many vertebrate and invertebrate clades (Atkinson, 
1994; Ashton, Tracy & Queiroz, 2000; Ashton, 2002), 
and these associations are so strong that they have 
been described as a series of ecological ‘rules’: the 
temperature–size rule (Atkinson, 1994), James’s rule 
and Bergmann’s rule (Bergmann, 1847; James, 1970; 
Blackburn, Gaston & Loder, 1999), relating to observa-
tions made within populations, across populations and 
across species, respectively. Each of these rules has 

puzzled life-historians for decades, especially for ecto-
therms (Perrin, 1995; Angilletta & Dunham, 2003).

The puzzle arises because large adult size confers 
high fitness (McLaren, 1966; Kingsolver et al., 2001; 
Rollinson & Rowe, 2015; Armstrong et al., 2018), and 
large size can be attained by delaying sexual matur-
ity, whereby the individual directs its energy toward 
growth for a greater period of time before diverting 
some energy to reproduction. Yet, natural selection will 
favour a life-history strategy in which energetic invest-
ment in somatic or vegetative growth is completely paid 
back in terms of future reproduction (Kozlowski, 1992). 
Optimal age and size at maturity must therefore bal-
ance the gains in fitness expected from increasing the 
duration of pre-maturation growth against the risk of 
mortality across life stages (Charlesworth, 1980; Roff, 
2002). Given that the growth rate of ectotherms should 
be much faster in warm environments compared with 
cool ones (Forster, Hirst & Woodward, 2011), classical 
life-history theory predicts the evolution of maturation *Corresponding author. E-mail: jessica.santilli@mail.utoronto.ca
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at a larger size in warm environments (Berrigan & 
Charnov, 1994; Perrin, 1995; Atkinson & Sibly, 1997; 
Angilletta, Steury & Sears, 2004b; but see Kozlowski, 
Czarnoleski & Danko, 2004). This prediction opposes 
the pattern observed in many (but not all) ectothermic 
clades (Atkinson, 1994; Atkinson & Sibly, 1997).

Although oxygen limitation has been proposed as 
a mechanism driving negative associations between 
size and temperature for species that respire in water 
(Atkinson, Morley & Hughes, 2006; Forster, Hirst & 
Atkinson, 2012; Horne, Hirst & Atkinson, 2015), few 
general explanations exist for the same temperature–
size relationships observed in air-breathing species 
(Kozlowski et al., 2004; Atkinson et al., 2006; Forster 
et al., 2012). In endotherms, for instance, the most 
popular explanation for James’s rule is that large 
size results in decreased surface area-to-volume ratio, 
which allows less heat to escape an organism, such 
that body heat is better retained in cool environments 
(Mayr, 1956; Osorio-Canadas et al., 2016). Yet, for ecto-
thermic vertebrates, turtles also demonstrate a strong 
propensity to follow James’s rule, whereas lizards and 
snakes show the reverse pattern (Ashton & Feldman, 
2003). For turtles, snakes and lizards, it seems unlikely 
that surface area-to-volume relationships and heat 
conservation would drive responses to temperature, 
as a large ectotherm may retain heat more effectively 
but acquire it with more difficulty. Furthermore, the 
disparate responses of temperature–size relationships 
across birds, mammals and turtles (a negative associ-
ation) vs. lizards and snakes (a positive association) 
suggest that the pattern arises, or at least can arise, 
for reasons that are independent of heat balance.

Many studies on James’s rule aim to determine 
whether a correlation exists between the population-
mean or maximal body size and regional temperature 
means (Ashton et al., 2000; Ashton, 2002; Ashton & 
Feldman, 2003; Adams & Church, 2008; Berke et al., 
2013; Rypel, 2014), but a paucity of empirical work is 
motivated by a priori hypotheses that seek to under-
stand why body size clines exist in the first place (for 
exceptions, see: Angilletta et al., 2004a; Litzgus & 
Smith, 2010; Horne et al., 2015; Osorio-Canadas et al., 
2016). Furthermore, most studies do not consider how 
the joint effects of seasonality and temperature may 
impact body-size evolution and result in body-size 
clines (for exceptions, see: Roff, 1980; Blanckenhorn 
& Demont, 2004; Litzgus & Smith 2010; Horne et al., 
2015). Currently, there is to our knowledge only one ver-
bal explanation for James’s rule in chelonians (turtles 
and tortoises) (Litzgus & Smith, 2010; Werner et al., 
2016), one that focuses on time-constrained life histo-
ries. The premise of the theory is that all freshwater 
turtles are both iteroparous and oviparous, and eggs 
are generally large and incubate over a long period of 

time, often between 60 and 90 days (Ernst & Lovich, 
2009). Within most species, the egg-laying period is 
long in warm climates, where individual females lay 
sequential clutches over several months; conversely, 
the egg-laying period is short in cold climates, with 
most individuals laying one or two clutches per year, 
generally in the spring or early summer (Moll, 1973; 
Ganzhorn & Licht, 1983; Mendonca, 1987). The afore-
mentioned pattern is likely to arise because turtles in 
strongly seasonal environments are subject to a time 
constraint; turtle embryos are not freeze tolerant and 
must hatch out of the egg before winter. Given that 
embryos are subject to time constraints on develop-
ment, relatively few successful clutches per year are 
possible when the growing season is short (Edge et al., 
2017).

Litzgus & Smith (2010; see also Werner et al., 2016) 
proposed that, when the time constraint is relaxed or 
non-existent, as in warm climates, the optimal age 
and size at maturity are relatively small, because 
the benefits of delaying reproduction and attaining a 
larger size are outweighed by the benefits of matur-
ing early and reproducing several times per season. In 
more northern environments, however, season length 
limits the number of potentially successful clutches 
that can incubate in a given year, thereby enhanc-
ing the fitness benefits of delaying reproduction so 
that a large body size can be attained, ultimately 
allowing the few clutches produced per season to be 
relatively large (Elgar, 1990; Iverson & Smith, 1993; 
Iverson et al., 1993; Werner et al., 2016). The result 
is that annual per capita reproductive output may be 
similar in northern vs. southern regions despite dif-
ferences in growing season length, as appears to be 
the case for spotted turtles (Clemmys guttata; Litzgus 
& Mousseau, 2006). If this hypothesis is correct, then 
it provides a general explanation for James’s rule in 
freshwater turtles; however, if it is incorrect, then new 
hypotheses for James’s rule need to be proposed and 
evaluated.

To date, there has been only one restricted test of 
this hypothesis, which we call the Litzgus–Smith 
hypothesis. Litzgus & Smith (2010) tested the predic-
tion that relatively strong female-biased sexual size 
dimorphism (SSD) in Chrysemys picta (a freshwater 
turtle) should evolve in seasonal environments, by 
virtue of strong upward selection on female size at 
maturity (and perhaps rates of indeterminate growth; 
Armstrong et al., 2018). They found that, for this sin-
gle species, female-biased SSD became significantly 
less pronounced in seasonal environments (Litzgus & 
Smith, 2010), which is the opposite of the pattern pre-
dicted by the Litzgus–Smith hypothesis. Nevertheless, 
SSD in turtles can be affected by a broad array of fac-
tors (Blanckenhorn et al., 2006), including the extent of 
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male–male competition for mates and selection for eco-
logical divergence among the sexes when morphospace 
is ecologically available to be exploited (Shine, 1989; 
Stephens & Wiens, 2009). It is therefore premature to 
reject the Litzgus–Smith hypothesis on the basis of 
this test.

A broader test of the Litzgus–Smith hypothesis 
requires manipulation of the extent to which time 
constraints are experienced over a north–south gra-
dient and observing the outcome of body-size evo-
lution in females, all in a phylogenetically explicit 
context (Felsenstein, 1985). Interestingly, the nat-
ural history of a handful of freshwater turtle spe-
cies lends itself to such a manipulation. Although 
most species of freshwater turtles are capable of 
producing multiple clutches per year, four species 
are known to have reproductive cycles that allow 
the production of only one clutch per year: snap-
ping turtles (Chelydra serpentina), alligator snap-
ping turtles (Macrochelys temminckii), Blanding’s 
turtles (Emydoidea blandingii) and wood turtles 
(Glyptemys insculpta). Multiple clutching has never 
been reported in these species, and multiple clutch-
ing seems very unlikely because follicular cycles in 
these three species are amenable to only one clutch 
per season (Powell, 1967; Steyermark, Finkler & 
Brooks, 2008; Rollinson, Farmer & Brooks, 2012). 
For species whose reproductive cycles allow only one 
clutch per year, the time constraint will be relatively 
independent of growing season length, as there is 
no opportunity to increase reproductive success with 
multiple clutches per season. For single-clutching 
species, then, the optimal age and size at maturity 
does not depend on the expected reproductive fre-
quency within a season, and all else being equal, 
multi-clutching species should exhibit stronger 
body-size clines than single-clutching species. 
Furthermore, because of the rarity of single-clutch-
ing species, it would not be surprising to observe a 
general trend of James’s rule in freshwater turtles 
(Ashton & Feldman, 2003), because multiple-clutch-
ing species are far more common and, according to 
the Litzgus–Smith hypothesis, are expected to fol-
low a latitudinal cline.

In the present study, we amass a dataset on adult 
body size for several populations of seven species of 
turtle, all of which have broad geographical ranges, 
and three of which are species that produce single 
clutches. We compare the strength (slope) of the 
temperature–size response between single- and 
multiple-clutching species across populations and 
latitude, predicting that multiple-clutching spe-
cies will exhibit relatively strong temperature–size 
associations. For completeness, we also explore how 
SSD changes across latitude, following Litzgus & 
Smith (2010).

MATERIAL AND METHODS

Selection of Study SpecieS

To our knowledge, there are four species of fresh-
water turtle in North America that both produce a 
single clutch per season and have large geograph-
ical range sizes: M. temminckii, Chelydra serpentina, 
G. insculpta and E. blandingii. Body-size data for 
M. temminckii were very scarce, and therefore this 
species could not be used in this study. Furthermore, 
Chelydra serpentina, G. inscultpa and E. blandin-
gii differ from M. temminickii in that their north-
ern geographical range limits extend very far north, 
into southern Canada (Table 1). Thus, the three sin-
gle-clutching species used herein all exhibit exten-
sive geographical ranges that extend into very cool 
thermal environments. To make a fair comparison 
between single-clutching vs. multi-clutching species, 
we selected multi-clutching species with large geo-
graphical ranges that likewise extend into southern 
Canada. We found five species that fit these crite-
ria: Chrysemys picta ssp., Apalone spinifera spin-
ifera, Clemmys guttata, Sternotherus odoratus and 
Graptemys geographica (Table 1). However, we found 
very few data for G. geographica, such that this spe-
cies could not be included in our study, leaving four 
multi-clutching species for analysis.

Body-Size data

We used species-specific literature searches to collate 
data on population-mean body mass (in grams), cara-
pace length (CL; in millimetres) and plastron length 
(in millimetres), separately for males and females. 
Unpublished data on several populations and species 
were also provided by J. Iverson, Ontario Nature and 
C. Davy. We did not use body-size data from telemetry 
studies because these data might represent a non-ran-
dom sample of adults, i.e. those large enough to fit with 
radio tags.

Different studies varied in how body size was quan-
tified, with most generally reporting some combina-
tion of straight-line carapace length (in millimetres) 
and/or straight-line plastron length (in millimetres) 
and/or adult weight (in grams). Carapace length was 
reported most often, although adult mass is likely to 
be a better metric of body size than carapace length 
(Lovich & Gibbons, 1992). Where necessary, popu-
lation-mean female plastron length was converted 
to population-mean female carapace length or adult 
mass, and population-mean female carapace length 
was converted to population-mean female body mass 
(Supporting Information, Table S1). These conversions 
were performed on a species-specific basis and a sex-
specific basis, with two exceptions. For A. spinifera, 
a species with extreme SSD, we found that a log–log 

D
ow

nloaded from
 https://academ

ic.oup.com
/biolinnean/article/124/3/381/4999712 by U

niversity of Toronto user on 21 N
ovem

ber 2020

http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/bly054#supplementary-data


384 J. SANTILLI and N. ROLLINSON

© 2018 The Linnean Society of London, Biological Journal of the Linnean Society, 2018, 124, 381–393

regression fit male and female body size data well 
(r2 = 0.99), so a single regression was used to convert 
CL to mass for both sexes. For S. odoratus, we used 
body-size data from Iverson et al. (1993) for species in 
the family Kinosternidae (one data point per species), 
for species with body sizes similar to S. odoratus, to 
convert female CL to mass (r2 = 0.71). On the whole, 
most conversions featured high coefficients of deter-
mination (mean r2 = 0.91, range 0.71–0.99; Supporting 
Information, Table S1).

Sample sizes per population averaged 84.6 (range, 
5–1113) for female size and 110.7 (range, 5–1637) for 
male size; however, samples sizes could not always be 
determined (e.g. data obtained from previous compila-
tions). After data collection was complete, study loca-
tions were carefully examined for duplication across 
studies, and in such cases, the size estimates were 
averaged across duplicated locations. For each spe-
cies, we were ultimately left with between seven and 
21 (mean = 13.0) estimates of population-mean body 
mass and between five and 15 (mean = 9.1) estimates 
of SSD.

temperature data

The mean annual temperature for each popula-
tion was collected from the nearest Environment 
Canada weather station for populations in Canada. 
The mean annual temperature of populations 
located in the USA was collected from the nearest 
National Oceanic and Atmospheric Administration 
(http://www.noaa.gov/) weather station. In some 
cases, the exact location of the population was not 
reported (e.g. for endangered species where collec-
tion for the pet trade is a concern). For these cases, 

we predicted the mean annual temperature from a 
regression of latitude (latitude was always known) 
and the mean annual temperature for species with 
known locations (Temperature = −0.903(Latitude) + 
47.1, N = 93, r2 = 0.94, P < 0.001). This was done for 
a minority of observations (N = 8 populations). In 
the main text, we focus on mean annual tempera-
ture rather than latitude, as temperature should 
better reflect growing season length than latitude 
(e.g. variation in elevation is captured by tempera-
ture but not latitude).

phylogenetic analySeS

Owing to large interspecific differences in the species-
mean body size, regression slopes of body size over 
temperature are not comparable across species. We 
overcame this problem by expressing each datum in 
terms of its z-score (Zar, 1984), where body size was 
converted in units of standard deviations, specific to 
each species, as follows:

 z xij j j= −( )µ SD  (1)

where x is the body size of the ith individual in species 
j, μ is the mean body size of species j, and SD is the 
standard deviation in body size of species j.

Having standardized body size for each species, it 
becomes difficult to perform analyses that simultan-
eously estimate variation in mean body size across 
species and the slope of size over temperature (e.g. 
ANCOVA), because the species-mean body size of all 
species is zero. Therefore, we first obtained species-
specific ordinary least-squares (OLS) regression slopes 
of standardized size over temperature. Phylogenetic 

Table 1. List of (sub)species used in the present study, and the number of populations used in analyses of body mass and 
sexual size dimorphism 

Species Subspecies Reprod. Range (km2) Minimal latitude Maximal 
latitude

N body 
mass

N SSD

Emydoidea blandingii – Single 1 012 873* 37.90°N 46.59°N 10 6
Glyptemys insculpta – Single 1 012 873 36.17°N 46.95°N 15 15
Chelydra serpentina serpentina Single 5 681 234 25.31°N 56.37°N 17 6
Chrysemys picta bellii, dorsalis, 

marginata, 
picta

Multiple 5 443 178 28.48°N 57.73°N 21 15

Clemmys guttata – Multiple 881 788 28.02°N 47.53°N 9 9
Apalone spinifera spinifera Multiple 3 597 348 23.77°N 45.92°N 7 5
Sternotherus odoratus – Multiple 2 562 525 25.38°N 46.50°N 12 8

*No range size data were available for E. blandingii, but its range is similar in size to that of G. insculpta, such that the value in the table is 
approximated from G. insculpta. ‘Reprod.’ refers to the type of reproductive cycle (single vs. multiple clutches); SSD, sexual size dimorphism.
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analysis was introduced after obtaining standardized 
slopes for each species, because the relevant issue is 
whether the change in body size with temperature has 
a phylogenetic signal (see also de Queiroz & Ashton, 
2004). A species-level phylogeny of freshwater tur-
tles was obtained from Guillon et al. (2012). We time 
calibrated the phylogeny following Sanderson (2002), 
using the penalized likelihood approach. We used the 
value of λ that minimized the cross-validation score 
(λ = 100, in this case), having searched across values of 
λ ranging from 10–1 to 106. Finally, the tree was pruned 
to exclude species not in our study (Fig. 1).

We implemented a phylogenetic generalized least-
squares (PGLS) model (Martins & Hansen, 1997), 
comparing the standardized regression slopes of the 
two groups (single- vs. multi-clutching species), with 
each species as a data point. However, because the 
number of populations sampled per species was some-
times small, species-specific OLS regression slopes of 
standardized size over temperature are likely to be 
sensitive to outliers. To ensure that the main PGLS 
result was robust, we explored the sensitivity of our 
results to potential outliers. First, we used a jack-
knife approach, which performs an OLS regression 
N − 1 times for each species (where N is the number 
of species-specific populations sampled), systemati-
cally omitting one population in each regression. We 
retained the slope estimate for each jackknife run, 
thereby generating a distribution of plausible slope 

values for each species. Next, for 1000 bootstrap runs, 
we sampled a single slope estimate from the jack-
knifed distribution of each species (N = 7 data points 
generated for each bootstrap run, because there are 
seven species in this study), then used a PGLS model 
with reproductive cycle (single- vs. multi-clutching 
species) as a grouping variable to estimate the dif-
ference in the standardized slope of single- vs. multi-
clutching species, with multi-clutching species set 
as the reference category. The bootstrapping method 
resulted in 1000 PGLS estimates of the difference in 
regression slope between single- vs. multi-clutching 
species, along with 1000 P-values. If our main PGLS 
result is robust to the inclusion/omission of outliers, 
there should be little signature that certain combi-
nations of slope estimates produce results that differ 
from those in the main analysis (e.g. bimodal distribu-
tion of estimates, with the smaller peak approaching 
statistical significance).

We calculated SSD as follows:

 SSD female size male size= ( )  (2)

We did not subtract a value of one from this ratio 
(Lovich & Gibbons, 1992), because many species are 
being compared, such that an SSD value of 1.0 indi-
cates no dimorphism, and values greater than one 
indicate female-biased SSD. For SSD data, parameters 
for the OLS regression of each species were calculated, 
but because there was no general relationship between 
SSD and temperature (see Results), no bootstrapping 
comparison of single- vs. multi-clutching species was 
performed.

All statistical analyses were performed in the R 
environment (R Core Team, 2016), using the packages 
geiger (Harmon et al., 2008), phytools (Revell, 2012) 
and caper (Orme et al., 2013). The PGLS models were 
fitted with the R package caper (Orme et al., 2013), 
and bootstrapping was performed using the base pack-
age (R Core Team, 2016).

RESULTS

Using OLS regression, we found that five of the seven 
turtle species exhibited a significant negative rela-
tionship between standardized female body mass and 
temperature (Fig. 2). Only A. spinifera and Clemmys 
guttata (both multi-clutching species) exhibited a 
non-significant relationship between temperature 
and mass, and in both cases the trend was negative. 
The OLS results were qualitatively the same whether 
adult carapace length or adult mass was used as an 
estimate of size (Supporting Information, Table S2). 
A two-tailed binomial test suggested that there is a 
general tendency for turtles to respond negatively to 

Figure 1. Phylogeny of seven turtle species, with  
single-clutching species in bold.
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temperature, as the two-tailed probability that all 
seven species would exhibit a negative relationship by 
chance alone was P = 0.012. 
There was no difference between single- and 
mult i -c lutching spec ies  in  the  response  o f 

standardized mass to temperature (PGLS mean dif-
ference = −0.117 ± 0.0815, P = 0.21, λ = 0), nor in the 
response of standardized carapace length to tem-
perature (PGLS mean difference = −0.125 ± 0.0863, 
P = 0.21, λ = 0). Bootstrap comparison of jackknifed 

A E

B F

C

D

G

Figure 2. Ordinary least-squares regressions for population-mean female mass (scaled for comparisons across species; 
see Material and Methods) of seven North American turtle species in relation to mean annual temperature. A–D, multi-
clutching species. E–G, single-clutching species.
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regression slopes suggested that the main result of 
our PGLS analysis is robust to the inclusion/exclu-
sion of outlying data points. Specifically, virtually no 
combination of jackknifed regression slopes produced 
a parameter estimate in the direction predicted by the 
Litzgus–Smith hypothesis; in the rare instances that a 
significant difference occurred, it was in the direction 
opposite to the Litzgus–Smith prediction (Fig. 3).

In general, SSD was not related to temperature 
(Fig. 4). Only S. odoratus (multi-clutching species) 
exhibited a significant relationship between SSD 
and temperature, with female-biased SSD becom-
ing more pronounced with increasing temperature, 
although this relationship was clearly driven by a 

single population in the south (Fig. 4A). When cara-
pace length was used as an estimate of size, the SSD of 
S. odoratus was no longer related to temperature, but 
the female-biased SSD of Chrysemys picta increased 
with temperature (Supporting Information, Table S3), 
which replicates the result of Litzgus & Smith (2010), 
who focused exclusively on carapace length.

DISCUSSION

Our results communicate three main findings. First, 
we confirm that temperature–size responses are gen-
erally negative across populations of freshwater turtles 

A B

C D

Figure 3. Distribution of estimates and P-values from 1000 bootstrapped phylogenetic generalized least-squares (PGLS) 
analyses. A, distribution of 1000 PGLS differences between single- and multi-clutching species for the mean standardized 
slope of female body mass over mean annual temperature. Arrowheads indicate the mean difference in the 1000 bootstrap 
replicates, and dotted vertical lines indicate a difference of zero. Values less than zero on the x-axis indicate that, on aver-
age, the body size of single-clutching species declines more strongly with temperature than that of multi-clutching species. 
Values greater than zero in the shaded area indicate that the body size of single-clutching species declines less strongly with 
temperature than that of multi-clutching species, as predicted by the Litzgus–Smith hypothesis. B, distribution of P-values 
for estimates in A, with dotted vertical line denoting P = 0.05. C, distribution of 1000 PGLS differences between single- and 
multi-clutching species for the mean standardized slope of female carapace length over mean annual temperature. D, dis-
tribution of P-values for estimates in C.
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(for further evidence of this generality, see Ashton & 
Feldman 2003). Second, temperature–SSD responses 
are generally absent in freshwater turtles, and those 
species that demonstrate weak temperature–SSD 

responses tend to show less female-biased dimorph-
ism in the north compared with the south (see also 
Blanckenhorn et al., 2006). Third, the type of repro-
ductive cycle is not associated with the strength of 

A E

B F

C

D

G

Figure 4. Ordinary least-squares regressions for the sexual size dimorphism (mean female mass/mean male mass) of 
seven North American turtle species in relation to mean annual temperature. A–D, multi-clutching species. E–G, single-
clutching species. Note the scale difference on the y-axis of D.
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temperature–size responses. We therefore reject the 
Litzgus–Smith hypothesis, which posits that season-
ality and time constraints drive James’s rule in fresh-
water turtles, and we explore alternative explanations 
for the generality of temperature–size responses in 
chelonians.

All species in the present study followed James’s 
rule, or at least responded to temperature in the dir-
ection consistent with James’s rule (see also Ashton 
& Feldman, 2003). Our findings therefore underline 
that some general factor governs temperature–size 
responses in chelonians, regardless of reproductive 
cycle. To our knowledge, there is currently no working 
hypothesis that might explain the ubiquity of James’s 
rule in turtles, other than the well-trodden explana-
tions of starvation resistance and heat balance (see 
also Rodrigues et al., 2018), which seem unlikely for 
ectothermic animals (Werner et al., 2016). If a new 
hypothesis is to be developed, then we suggest that it 
should draw on the observation that close relatives of 
chelonians, namely squamate reptiles, tend to increase 
in size as temperature increases, which is the opposite 
of turtles (Ashton & Feldman, 2003). What key differ-
ence between these close relatives results in opposite 
temperature–size responses across latitude? One pos-
sibility is that squamate reptiles tend to be highly ter-
restrial, whereas chelonians tend to be highly aquatic. 
In light of the aquatic lifestyle of many chelonians, 
we offer two non-mutually exclusive hypotheses that 
can help to explain why representatives of this group 
become large in cool climates.

First, warmer temperatures result in an increase 
in oxygen consumption of ectotherms, which results 
in difficulty regulating oxygen demand and sup-
ply (Woods, 1999; Verberk et al., 2011; Verberk & 
Atkinson, 2013). Given that balancing oxygen sup-
ply and demand is facilitated when body size and/or 
cell size is small (Woods, 1999; Atkinson et al., 2006; 
Czarnoleski et al., 2015), it has been suggested that 
the plastic responses of adult size and cell size to tem-
perature, which tend to be negative (Atkinson, 1994), 
reflect an acclimatization response to both decreased 
oxygen supply and increased demand in warm envi-
ronments (Atkinson et al., 2006). There is strong evi-
dence among ectotherms that large adult size and cell 
size occur when oxygen availability is high (Harrison 
& Haddad, 2011; Heinrich et al., 2011), and that low 
temperature exacerbates the benefits of large size 
by virtue of decreased metabolic rate, hence a fur-
ther increase in the ratio of oxygen supply to demand 
(Frazier, Woods & Harrison, 2001). Most importantly, 
temperature-dependent oxygen limitation is espe-
cially pronounced in aquatic environments, where 
oxygen solubility is strongly temperature dependent 
and decreases with temperature (Forster et al., 2012; 

Horne et al., 2015). Indeed, temperature-dependent 
oxygen limitation seems to drive James’s rule among 
aquatic invertebrates (Horne et al., 2015; Walczyńska 
& Sobczyk, 2017) and has also been implicated in 
negative relationships between temperature and the 
size of aquatic, ectothermic vertebrates at the macro-
evolutionary level (Rollinson & Rowe, 2018a, b).

We recognize several characteristics of chelonians 
that could promote the evolution of size in response to 
an interaction between temperature and oxygen. First, 
although temperature-dependent oxygen limitation 
is generally believed to be most relevant for species 
that respire in water (e.g. cutaneously or with gills; 
Atkinson et al., 2006; Rollinson & Rowe, 2018a, b), we 
note that many aquatic turtles exhibit cutaneous res-
piration not only in winter conditions, but also during 
the summer (Ultsch, Herbert & Jackson, 1984). Given 
that a decrease in body size results in a decrease total 
oxygen demand, the extent to which cutaneous res-
piration satisfies oxygen demand in warm conditions 
could be enhanced when body size is small, although 
this argument depends on the scaling of skin sur-
face area to turtle volume (e.g. see Rombough, 2007). 
Second, turtles must hold their breath for protracted 
periods of time during the active season, given that 
activities such as foraging, mating and escape from 
predators (e.g. otters) all occur under water, where 
pulmonary ventilation is impossible (Ernst & Lovich, 
2009). Notably, there is a decrease in the affinity of 
haemoglobin for oxygen at warmer temperatures, 
which ultimately facilitates unloading of oxygen at 
metabolizing tissues but also results in lower oxy-
gen-carrying capacity of the blood (Damsgaard et al., 
2013). In warm environments, therefore, turtles might 
benefit from smaller body and cell size, such that total 
oxygen demand is reduced and oxygen delivery at the 
whole organism and cellular (mitochondrial) level is 
facilitated during activity. Indeed, there is some evi-
dence that the cell size of at least one species of fresh-
water turtle (Clemmys guttata) is positively related 
to latitude (Litzgus, DuRant & Mousseau, 2004). This 
intraspecific decrease in cell size with increasing tem-
perature is predicted to be adaptive on theoretical 
grounds (Woods, 1999) and is consistent with obser-
vations of model organisms in laboratory conditions, 
where joint effects of temperature and oxygen avail-
ability have been implicated in decreased cell size 
(Harrison & Haddad, 2011; Walczyńska et al., 2015).

Second, overwintering physiology might also help 
to drive the association between body size and tem-
perature. During cold hypoxia/anoxia, metabolic rate 
decreases and is accompanied by a shift from aerobic 
respiration to anaerobic glycolysis that produces lac-
tic acid. The acid must be buffered to maintain acid–
base homeostasis and prevent metabolic acidosis. In 
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the extracellular fluid, carbonate (coming from the 
shell or bones) and bicarbonate act to buffer the lactic 
acid. The rest of the acid enters the shell and bones 
and is again buffered by carbonate. Carbon dioxide is 
produced by these reactions and enters the extracellu-
lar fluid, then diffuses into surrounding water (Ultsch, 
1989, 2006). During anoxia, therefore, larger individu-
als have a lower mass-specific metabolic rate, and the 
lower metabolic rate might ultimately result in propor-
tionately more buffering capacity by virtue of a greater 
mass of shell and bones relative to acid production. 
Indeed, anecdotal evidence suggests that larger indi-
viduals of a given species can survive longer during 
anoxia (Ultsch et al., 1984; Reese, Jackson & Ultsch, 
2002), and the buffering capacity of a given species has 
also been implicated in survival duration during cold 
hypoxia (Jackson et al., 2007). It is therefore possible 
that large size confers an advantage during cold hyp-
oxia, and James’ rule may arise because the duration 
of cold hypoxia will generally increase with latitude.

Comparing the temperature–size response of 
aquatic vs. terrestrial turtles across latitude would 
be a reasonable framework in which to approach both 
hypotheses, because both hypotheses generally predict 
that responses to temperature would be more strongly 
negative in aquatic chelonians compared with terres-
trial ones (see also Forster et al., 2012; Horne et al., 
2015; Rollinson & Rowe, 2018a,b). Although some ter-
restrial tortoises do follow James’s rule (e.g. Fasola 
et al., 2007; Werner et al., 2016), it is unknown whether 
the strength of temperature–size relationships in ter-
restrial species is weaker than those in highly aquatic 
species, and this is the crucial test. Furthermore, more 
nuanced tests of the hypotheses presented herein are 
also possible. For instance, if overwintering physiology 
drives James’s rule in chelonians, then temperature–
size responses in aquatic species that rely heavily on 
anaerobic respiration should be stronger than those in 
species that do not. This is because hypoxia is impli-
cated in the advantages of large size, such that species 
that overwinter in relatively normoxic conditions (e.g. 
Apalone) would not benefit from larger size during 
overwintering. Indeed, among the weakest tempera-
ture–size responses observed in the present study was 
that of A. spinifera, a softshell turtle (Fig. 2D), and this 
species has a restricted northern range limit compared 
with all other species examined in the present study, 
possibly by virtue of its inability to survive well during 
hypoxia (Dinkelacker et al., 2005).

In summary, our study did not support the hypothesis 
that time constraints on reproduction drive James’s 
rule in turtles. New explanations for ecogeographical 
size clines in turtles are therefore required. First, we 
suggest that temperature-dependent oxygen limitation 
drives James’s rule in turtles, a mechanism that has 

been implicated in temperature–size relationships in 
a variety of other groups but has never been applied 
to turtles. Second, we suggest that temperature–size 
responses might be related to the overwintering physi-
ology of turtles, by virtue of a decrease in mass-specific 
metabolic rate with size, resulting in a disproportionate 
increase in the capacity of large individuals to buffer 
lactic acid. We suggest that the way forward in the pur-
suit of a general explanation for temperature–size rela-
tionships is to explore and compare temperature–size 
relationships between aquatic and terrestrial turtles.
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