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Abstract
1. The consequences of individual variation in life-history traits have been well stud-

ied due to their importance in evolutionary ecology. However, a trait that has re-
ceived little empirical attention is the rate of indeterminate growth. In long-lived 
ectotherms, subtle variation in growth after maturity could have major effects over 
the animals’ lifetimes.

2. These effects are difficult to measure due to the challenges involved in reliably es-
timating individual variation in the face of environmental stochasticity, and the 
need to account for trade-offs among growth, reproduction and survival. However, 
modelling advances have made such analysis possible if long-term high-quality 
datasets are available.

3. We used an integrated state-space modelling framework to reveal relationships 
between indeterminate growth, reproduction and survival in a population of North 
American snapping turtles (Chelydra serpentina) using a 41-year dataset for 298 
adult females.

4. A hierarchical version of the von Bertalanffy model fitted to data on carapace 
lengths showed substantial individual variation in growth trajectories, and hierar-
chical models fitted to clutch-mass data and recapture histories showed that repro-
ductive output and survival probability increased with size. Integration of these 
models revealed no detectable trade-offs—i.e., individual growth parameters were 
not correlated with size-specific survival or reproduction rates, and individual vari-
ation in reproductive output did not affect the size-specific survival rate. 
Consequently, individual variation in growth parameters was estimated to result in 
>2-fold variation in post-maturity life expectancy and >4-fold variation in expected 
lifetime reproductive output.

5. These results illustrate that indeterminate growth can have major fitness conse-
quences in long-lived species. We suggest that the individual variation in growth 
rates reflects variation in environments experienced during development or later 
life. An understanding of this variation may be essential for predicting the popula-
tion dynamics of long-lived species under threat and identifying the most important 
environments to protect.
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1  | INTRODUCTION

Growth rate, size- at- age and life histories vary greatly among individ-
uals in a population (Cam, Aubry, & Authier, 2016; Plaistow, Shirley, 
Collin, Cornell, & Harney, 2015) as well as among species (Pianka, 
1970) and populations (Lindgren & Laurila, 2005). This individual vari-
ation is of fundamental importance in evolutionary ecology, hence it 
has been well quantified and its consequences well studied in some 
systems (Coulson et al., 2006; Pelletier, Clutton- Brock, Pemberton, 
Tuljapurkar, & Coulson, 2007). Of primary interest to ecologists is the 
extent to which individual variation in growth and life- history strat-
egy translate into variation in lifetime reproductive success (Abrams 
& Rowe, 1996; Pelletier et al., 2007). Indeed, a variety of studies have 
explored the fitness consequences of life- history variation, often using 
laboratory (Balshine- Earn, 1995; Creighton, Heflin, & Belk, 2009) and 
field experiments (Hanssen, Hasselquist, Folstad, & Erikstad, 2005; 
Visser & Lessells, 2001). Although experiments are ideal for detecting 
life- history trade- offs (Reznick, 1985) and estimating fitness (Plaistow 
et al., 2015), the consequences of individual variation in growth and 
life- history strategy in long- lived species accrue over years and de-
cades, and can only be quantified through long- term studies. To 
date, most long- term studies that explore the fitness consequences 
of life- history variation have been conducted on birds and mammals 
(Rollinson & Rowe, 2015), probably because fecundity and survival can 
be more- easily quantified than in ectotherms, which are often cryptic 
and produce many offspring that are not easily linked to particular fe-
males. If the goal is to understand to the full suite of traits that contrib-
ute to individual variation in lifetime reproductive success, then this 
taxonomic bias is problematic, as many ectothermic species exhibit 
traits not usually found in birds and mammals.

One trait that may cause substantial individual variation in lifetime 
reproductive success is indeterminate growth, i.e. growth that con-
tinues after sexual maturity, which occurs in most ectothermic ver-
tebrates and some invertebrates (Heino & Kaitala, 1999). Although 
indeterminate growth has received little empirical attention, theory 
suggests it is optimal in seasonal environments, where the prospect of 
successful reproduction is limited to a specific season, and resources 
acquired at other times of year cannot be used to increase current 
reproductive success (Ejsmond, Czarnołęski, Kapustka, & Kozłowski, 
2010; Ejsmond, Varpe, Czarnoleski, & Kozłowski, 2015). Thus, inde-
terminate growth affects fitness by affecting body size, which then 
translates into variation in future fecundity (McLaren, 1966). Indeed, 
positive size- dependence of fecundity has become a fundamental 
pillar of all theories of indeterminate growth (Ejsmond et al., 2010, 
2015; Gabriel, 1982; Kozłowski, 2006; Kozłowski & Uchmanski, 1987; 
Perrin, Sibly, & Nichols, 1993), and many models also assume that 
rapid growth reduces current survival probability due to reallocation 

of resources or risky behaviour (Gabriel, 1982; Perrin et al., 1993; see 
also Abrams & Rowe, 1996). Interestingly, existing theory on indeter-
minate growth invariably omits positive effects of current size on adult 
survival even though such effects are highly plausible (Jørgensen & 
Fiksen, 2006; Taborsky, Dieckmann, & Heino, 2003). The fitness ben-
efits of indeterminate growth therefore depend both on how growth 
impacts survival and fecundity through investment of resources and 
how current size directly affects immediate survival and fecundity. To 
better understand indeterminate growth and to inform theory, it is 
therefore important to estimate the consequences of individual vari-
ation in indeterminate growth on both survival and reproduction, and 
to account for possible trade- offs in these rates.

Turtles are an interesting group for exploring these issues due 
to their extreme life histories in terms of slow growth and long life 
spans. Turtles show no sign of senescence in most long- term studies 
(Congdon & Gibbons, 1990; Congdon, Nagle, Kinney, & van Loben Sels, 
2001; Congdon et al., 2003), although evidence of senescence has re-
cently been reported in one population (Warner, Miller, Bronikowski, 
& Janzen, 2016). Although turtles’ growth may be imperceptibly slow 
after maturity, long- term studies have revealed ongoing indeterminate 
growth over decades (Armstrong & Brooks, 2013; Congdon, Gibbons, 
Brooks, Rollinson, & Tsaliagos, 2013). Congdon et al. (2013) concluded 
that this indeterminate growth has a trivial effect on adult fitness due 
to the tiny increases in size after maturity compared to those occurring 
before maturity. However, Congdon et al.’s (2013) analysis did not ac-
count for individual variation in growth, used an inappropriate growth 
model (linear regression), and did not consider the potential survival 
benefits of increased size. It therefore remains possible not only that 
indeterminate growth could be functionally important to turtles, but 
that subtle variation in indeterminate growth rates could have major 
effects over the animals’ lifetimes. However, sophisticated analytical 
methods are needed to measure individual variation in the face of en-
vironmental stochasticity, to measure growth- related changes in sur-
vival, and to measure relationships among rates while accounting for 
uncertainties.

We applied an integrated state- space modelling framework to a 
41- year dataset for a population of North American snapping turtles 
(Chelydra serpentina L.) to determine the consequences of individual 
variation in growth among adult females. The dataset is ideal not only 
for its duration, but because the intensive monitoring regime provided 
detailed individual histories of growth, reproductive output and sur-
vival. In addition, because females in this population begin nesting at 
a consistent size (Armstrong & Brooks, 2013), subsequent size- related 
differences in growth and survival are almost entirely attributable to 
indeterminate growth rather than size at maturity. We specifically 
addressed the following questions. (1) What is the extent of individ-
ual variation in indeterminate growth and reproductive output when 
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annual variation is accounted for? (2) To what extent do reproductive 
output and annual survival probability increase as females increase in 
size? (3) Do faster- growing individuals have low survival probability or 
reproductive output for their size, and do females with consistently 
high reproductive output have low survival probabilities for their size? 
(4) Taking these potential size- effects and trade- offs into account, 
what are the consequences of individual variation in growth and 
 reproductive output on lifetime reproductive success?

2  | MATERIALS AND METHODS

2.1 | Species and study area

North American snapping turtles are omnivorous predators and scav-
engers that live in lakes, ponds and slow- moving rivers (Steyermark, 
Finkler, & Brooks, 2008). Our study was conducted in the Wildlife 
Research Area (45°35′N, 78°30′W) of Algonquin Provincial Park, near 
the northern edge of the species’ range. Mature females produce an-
nual clutches in spring or early summer, and bury them in sandy soil 
or gravel near water (Congdon, Greene, & Brooks, 2008). The size at 
which females become sexually mature appears to be quite consist-
ent within populations (Congdon et al., 2008). Females at Algonquin 
Park predictably start nesting when their straight- line carapace length 
reaches 24–26 cm, which is a small range of variation given that they 
may subsequently reach up to 36 cm (Armstrong & Brooks, 2013). The 
age at which they first nest is expected to be variable, but ranged from 
16 to 19 years for the five known- aged females in the dataset whose 
first clutches were recorded.

2.2 | Dataset

We used data collected from 1972 to 2012 on growth, reproductive 
output and survival of mature females. All procedures conformed 
to the guidelines of the Canadian Council on Animal Care and were 
 approved by the University of Guelph Animal Care Committee.

Throughout each nesting season, usually from late May to late 
June, we patrolled all likely nesting habitat in the Sasajewun Lake 
watershed, which included 21 different water bodies over a 20 km2 
area surrounding the research station. We also patrolled other se-
lected sites in the landscape when possible. Most adult females 
were encountered while nesting, and were captured by hand once 
their nests were complete. They were individually marked on first 
capture by wiring a numbered aluminium tag to the rear edge of 
the carapace, and by notching the edges of the carapace to enable 
identification if the tag was lost. We measured growth based on 
straight- line carapace length, which was measured to the nearest 
1 mm using callipers on each capture. We measured annual repro-
ductive output based on clutch masses, which were measured by 
temporarily excavating each nest shortly after laying. The precision 
of clutch- mass measurements varied depending on the data re-
corded (entire clutch weighed to the nearest 5 g, all eggs weighed 
individually to nearest 0.1 g, and/or a sample of 20 eggs weighed in-
dividually to the nearest 0.1 g). We therefore did initial modelling of 

these data to obtain an estimate and standard error for each clutch 
mass, allowing the variation in precision to be accounted for in a 
state- space framework.

We considered clutch mass to be a better metric than clutch 
size because both egg size and clutch size are positively correlated 
with fitness, and both are positively correlated with female body 
size (Rollinson, Farmer, & Brooks, 2012; Rollinson & Rowe, 2016). 
However, re- analysis of the data using clutch size showed that the 
choice of metric had negligible effect on the results.

For analysis, we arranged the data into a set of matrices where 
rows corresponded to individual females and columns to years. These 
data are provided in Appendix S1. The matrices for carapace lengths 
and clutch masses included all females that were captured on at least 
two occasions over the 41 years (n = 298), with missing values (NA) 
entered for years that a female was not captured. The matrices for 
survival analysis only included females captured at least twice in the 
Sasajewun Lake watershed (n = 195), with the encounter histories 
starting at the second encounters. Our rationale was that these fe-
males would be unlikely to emigrate from the watershed, an assump-
tion supported by capture data from the wider landscape. These 
matrices indicated whether or not each female was encountered 
each year, whether she was found dead (20 of 1,751 encounters), and 
whether she was last encountered at Sasajewun Lake itself. Females 
nesting at Sasajewun Lake were easier to monitor due to the nesting 
site being at the field station, so distinguishing these females allowed 
the difference in detection probability to be accounted for. Preliminary 
analysis suggested that detection probabilities were otherwise similar 
among sites.

2.3 | Modelling

We modelled growth, reproduction and survival simultaneously using 
OpenBUGS (Lunn, Spiegelhalter, Thomas, & Best, 2009; Spiegelhalter, 
Thomas, Best, & Lunn, 2014). The code is provided in Appendix S2. 
The Markov chain Monte Carlo (MCMC) estimation used in Bayesian 
updating software allows multiple data types to be modelled in an in-
tegrated framework while accounting for uncertainty in all parameters 
(Besbeas, Freeman, & Morgan, 2005; Kéry & Schaub, 2012). Using an 
integrated state- space framework allowed us to estimate whether in-
dividual random effects for growth rate affected size- specific survival 
and reproduction rates, and therefore whether trade- offs were oc-
curring. It also allowed carapace lengths to be modelled as missing 
values in years without captures, meaning size- dependent survival 
probabilities could be calculated for each turtle each year. We also 
included annual variation in parameters as well as individual variation, 
and assumed that annual effects were consistent among individuals 
(hence trade- offs in annual growth, reproduction and survival rates 
will be reflected in relationships among individual random effects). 
Annual variation was expected due to changes in conditions, such 
as mean temperature (Rollinson et al., 2012) and predation events 
(Brooks, Brown, & Galbraith, 1991), and accounting for such environ-
mental stochasticity is essential when  estimating individual variation 
(Cam et al., 2016).
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The growth model took the form

where Li,j and Li,j − 1 are the carapace lengths for individual i in the cur-
rent and previous year, ai is her asymptotic length, ki,j is her growth 
rate for the past year and εLi,j is residual error. This is the standard von 
Bertalanffy model for recaptures (Fabens, 1965) modified to incorpo-
rate both individual variation (Armstrong & Brooks, 2013, 2014) and 
annual variation in growth parameters. A key feature of the modified 
model is that the original “k” parameter has been replaced by ki,j/ai In 
the original model the initial growth rate is actually the product of a 
and “k”, imposing a correlation between these parameters if they are 
allowed to vary among individuals. The modification eliminates this 
problem (Armstrong & Brooks, 2013).

This individual and temporal variation was modelled as

 and

where ac and kc are the average growth parameters for the population, 
μai and μki are individual random effects and μtkj is the annual random 
effect on k.

The reproduction model took the form

where Mij is the clutch mass for individual i in the current year, αMc is 
the expected clutch of an average 24- cm female, βLM is the effect of 
additional length on the expected clutch mass, βaM and βkM are the 
effects of the female’s individual growth parameters, μMi is her resid-
ual individual random effect, μtMj is the annual random effect and εMij 
is residual error.

We used a state- space formulation of the Cormack–Jolly–Seber 
model (Schofield, Barker, & MacKenzie, 2009) to estimate both sur-
vival and recapture probabilities. In this formulation the survival status 
of each individual is modelled as a series of missing values after it was 
last recorded unless it was found dead. The survival model took the 
form

where ∅i,j is the probability of individual i surviving the past year, α∅ is 
the average annual survival probability of a 24- cm female, βL∅ is the 
effect of additional length on survival probability, βa∅, βk∅ and βM∅ 
are the effects of the female’s individual growth and reproductive out-
put parameters, μ∅i is her residual individual random effect and μt∅ 
is the annual random effect. Recapture probability was also modelled 
with a logit link, and included a distinction between Sasajewun and 
non- Sasajewun females as well as random annual variation.

We added additional code to simulate lifetime survival and repro-
duction histories of hypothetical females from the time they reached 
24 cm. This allowed us to estimate how the observed individual 

variation in growth parameters translates into lifetime reproductive 
success based on the parameters estimated from the data, assuming 
no senescence.

We used uninformative priors for all parameters. Priors for fixed 
effects were all normally distributed with mean 0, and priors for hyper- 
parameters (standard deviations of random effects) were all uniformly 
distributed with a minimum of 0. The precisions varied depending on 
the scale of the effects (Appendix S2). We fitted the model by running 
three MCMC chains for 50,000 iterations after a burn- in of 20,000 
iterations, checking for convergence using standard diagnostics (Kéry 
& Schaub, 2012).

3  | RESULTS

On average, a female reaching sexual maturity at 24 cm carapace 
length was estimated to reach an asymptotic size of 30.7 cm and to 
achieve 95% of this post- maturity growth within 100 years (Figure 1). 
However, growth trajectories varied greatly due high levels of in-
dividual variation in both asymptotic size and growth rate (Table 1, 
Parameters 1–4). For example the size increase in the first 10 years 
after maturity was estimated to range 15- fold, from 0.4 to 5.9 cm 
(2.5th and 97.5th percentiles).

Clutch masses of turtles clearly increased as they grew, with an 
average female’s clutch mass estimated to increase from 244 to 505 g 
as she grew from 24 to 30.7 cm (Table 1, Parameters 7–8; Figure 2). 
Mean clutch size increased from 28.7 to 39.3 over the same size range. 
There was substantial individual variation in clutch masses, meaning 
some females had consistently large and others had consistently small 
clutches for their size (Table 1, Parameter 11; Figure 2). However, this 
individual variation was unrelated to the individual variation in growth 
parameters, as indicated by the 95% credible intervals for βaM and 
βkM, which were both centred close to zero (Table 1, Parameters 
9–10).

(1)Li,j=ai−
(

ai−Li,j−1
)

exp

(

−ki,j

ai

)

+εLi,j

(2)ai=ac+μai

(3)log
(

ki,j
)

= log
(

kc
)

+μki+μtkj

(4)Mij=αMc+βLM
(

Lij
)

+βaM
(

μai
)

+βkM
(

μki
)

+μMi+μtMj+εMij

(5)
logit

(

Øi,j

)

= αØ+βLØ
(

Li,j−1−24
)

+βaØ
(

μai
)

+βkØ
(

μki
)

+ βMØ
(

μMi

)

+μØi+μtØj

F IGURE  1 Variation in growth trajectories of adult female 
snapping turtles in Algonquin Park, Canada, estimated using a 
hierarchical version of the von Bertalanffy model. The solid line 
shows an average female, and the dotted curved lines show the range 
of variation among individuals (2.5th and 97.5th percentiles). Most 
females start nesting when their carapace reaches 24 cm
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The estimated annual survival probability also changed signifi-
cantly with size (Table 1, Parameter 15), increasing from 0.92 for 
a 24- cm female to 0.96 for a 30- cm female (Figure 3). There was 
no evidence of individual variation in survival probability, as the 
posterior distribution for μ∅i was concentrated near zero (see Kéry 

& Schaub, 2012); consequently this parameter was removed from 
the model. Other than their effects on size, individual growth pa-
rameters had no apparent effects on survival, as shown by βa∅ and 
βk∅ having 95% credible intervals close to zero (Table 1, Parameters 
16–17). Survival was also unrelated to individual variation in 

TABLE  1 Growth, reproduction and survival parameters for 298 adult female snapping turtles in Algonquin Park, Canada, based on 41 years 
of data on captures, carapace lengths and clutch masses

Parameter Explanation Notation M SD

95% Credible interval

Lower Upper

1 Mean asymptotic carapace length ac 30.700 0.193 30.340 31.100

2 Log of mean growth rate (ak in original 
von Bertalanffy model)

log(kc) 0.232 0.116 −0.003 0.449

3 Among- individual variation in 
asymptotic carapace length

SD(μa) 1.247 0.155 0.953 1.553

4 Among- individual variation in log 
growth rate

SD(μk) 0.639 0.049 0.548 0.739

5 Among- year variation in log growth 
rate

SD(μtk) 0.581 0.102 0.411 0.808

6 Residual variation in carapace length SD(εL) 0.189 0.004 0.181 0.196

7 Mean clutch mass for a 24- cm female αMc 244.000 9.975 224.400 263.500

8 Effect of 1 cm increase in carapace 
length on mean clutch mass

βLM 38.910 1.898 35.230 42.730

9 Effect of individual asymptotic size 
parameter on clutch mass

βaM −1.187 3.872 −8.757 6.553

10 Effect of individual growth- rate 
parameter on clutch mass

βkM −0.640 6.230 −13.020 11.500

11 Among- individual variation in clutch 
mass

SD(μM) 67.870 3.585 61.190 75.290

12 Among- year variation in clutch mass SD(μtM) 18.980 2.773 14.280 25.080

13 Residual variation in clutch mass SD(εM) 50.840 0.957 49.010 52.760

14 Logit of annual survival probability for 
a 24- cm female

α∅ 2.582 0.376 1.891 3.363

15 Effect of 1 cm increase in carapace 
length on logit survival probability

βL∅ 0.137 0.058 0.020 0.251

16 Effect of individual asymptotic size 
parameter on logit survival probability

βa∅ 0.013 0.098 −0.176 0.207

17 Effect of individual growth- rate 
parameter on logit survival probability

βk∅ 0.052 0.180 −0.310 0.402

18 Effect of individual clutch- mass 
parameter on logit survival probability

βM∅ 0.001 0.002 −0.002 0.005

19 Among- year variation in logit survival 
probability

SD(μy∅) 1.053 0.249 0.656 1.623

20 Logit of mean detection probability if 
last found at Sasajewun Lake

αP 1.340 0.149 1.046 1.632

21 Effect on logit detection probability of 
being found at another site

βP −0.630 0.114 −0.854 −0.405

22 Among- year variation in logit detection 
probability

SD(μyP) 0.771 0.116 0.572 1.025

Parameters were estimated in OpenBUGS using a model integrating three components: (1) a modified version of the von Bertalanffy growth model incor-
porating individual variation in asymptotic size and growth parameters; (2) a reproductive output model incorporating individual variation in size- specific 
clutch mass; and (3) a mark–recapture model estimating size- specific survival probabilities. Reproductive output and survival probability are linked to the 
turtle’s individual growth parameters, and survival probability is linked to the turtle’s individual reproductive- output parameter. All models include random 
annual variation.
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reproductive output, as shown by the 95% credible interval for βM∅ 
(Table 1, Parameter 18).

Due to the effects of size on both survival and reproduction, and the 
absence of trade- offs, individual variation in growth parameters appears 
to have major consequences on lifetime reproduction. Over the range 
of individual values estimated for growth parameters ai and ki, life ex-
pectancy after maturity was estimated to range from 16 to 33 years 
(Figure 4). The longest adult life expectancies (97.5th percentile) were 
predicted to be 68 years for slow- growing individuals and 158 years for 
fast- growing individuals. Over the same range of growth parameters, ex-
pected lifetime reproductive output was estimated to range from 4.2 kg 
of eggs to 17.6 kg of eggs (Figure 4). This four- fold range in reproductive 

output assumes that females have similar size- specific reproduction 
rates. It increases to an eight- fold range when individual variation in size- 
specific reproduction (Figure 2) is accounted for.

Growth, clutch mass and survival all varied over time (Figure 5). 
However, annual variation in clutch mass was less pronounced than 
that of the other two rates when considered in relation to their means 
(Figure 5), and much lower than the variation among individual females 
(Table 1; Parameters 11–12). Although growth rates varied throughout 
the study, survival probability was normally fairly high but punctuated 
by three periods of low survival over the 41 years (Figure 5). Recapture 
probability also varied among years, being estimated to range from 
0.46 to 0.95 for females nesting on Sasajewun Lake and from 0.31 to 
0.90 for females nesting at other sites (2.5th and 97.5th percentiles).

4  | DISCUSSION

This study communicates four major findings (Figure 6). First, although 
adult female snapping turtles grow very slowly, there is great variation 
among individual females in growth trajectories, and this variation is 

F IGURE  2 Clutch mass in relation to body size for snapping turtles 
in Algonquin Park, Canada. The crosses show masses of individual 
clutches, and the lines show a hierarchical general linear model fitted 
to the data. The solid line shows the estimated increase in clutch mass 
with growth in an average female. Long- dashed lines show the 95% 
limits for individual variation among females, and short- dashed lines 
show 95% prediction intervals accounting for residual error as well as 
individual variation. The circled crosses show the two females with 
the largest and smallest clutch masses per body size
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not accounted for by annual variation in environmental conditions. 
Second, increases in size through indeterminate growth result in sig-
nificant increases in survival as well as in reproductive output. Third, 
there are no apparent trade- offs between rates of indeterminate 
growth and survival or reproduction, or between reproductive output 
and survival. Fourth, because of the absence of trade- offs, individual 
variation in growth has major consequences for lifetime reproductive 
success. These results contradict Congdon et al.’s (2013) conclusion 
that indeterminate growth was trivial to lifetime reproductive success 
of turtles, and illustrate the importance of accounting for individual 
variation in growth rates and using appropriate models to estimate its 
consequences. Below we frame these findings in the context of life- 
history theory and implications for population dynamics.

There are two general factors involved in the evolution of indeter-
minate growth, both of which likely play a role maintaining this trait in 
local snapping turtles. First, seasonality favours indeterminate growth, 
as energy should be diverted towards growth at times of year when off-
spring prospects are poor, provided that larger body size increases fu-
ture fecundity (Ejsmond et al., 2010; Kozłowski, 2006). Indeed, snapping 
turtles in our study population are near their species’ northern range 
limit, and inhabit a highly seasonal and time- constrained environment; in 
fact, many nests exhibit total failure for lack of sufficient thermal energy 
for embryos to develop and hatch, suggesting that eggs laid early in the 
season are more likely to be successful (Edge et al., 2017). Second, inde-
terminate growth tends to be favoured when life expectancy is relatively 
long (Ejsmond et al., 2010, 2015; Perrin et al., 1993). This is because 
capital invested in post- maturity growth, which will increase reproduc-
tive output later in life (McLaren, 1966), generally has little chance of in-
creasing fitness when life expectancy is short. Snapping turtles may live 
well over 100 years (Armstrong & Brooks, 2014), so there is potential for 
indeterminate growth to be highly adaptive in this species.

The extreme longevity of turtles is partly attributable to their cara-
paces, which are expected to reduce extrinsic mortality. However, the 
ultimate explanation for this longevity may be their low and stochastic 
reproductive success, which is expected to drive the evolution of low an-
nual reproductive effort coupled with protracted reproductive life spans 
(Schaffer, 1974). The clutch masses reported herein, for example, were 
8.1% of the female’s body mass on average, in comparison to a median 
of approximately 13% among oviparous squamates that produce one 
clutch per year (Mesquita et al., 2016; Scharf et al., 2015). The low but 
protracted reproductive output of turtles increases the probability of 
encountering conditions with high hatching and juvenile survival rates 
(Philippi & Seger, 1989; Schaffer, 1974). Furthermore, mature female 
turtles have high residual reproductive value (Congdon, Dunham, & Van 
loben sels, 1994; Cunnington & Brooks, 1996), such that adult survival 
should be prioritized over current reproduction, and growth is not ex-
pected to be prioritized unless it enhances survival and future reproduc-
tion rather than compromising it (Williams, 1966). This is consistent with 
the apparent absence of trade- off in snapping turtles (Table 1).

Our results are valuable in demonstrating that indeterminate 
growth improves future survival. The consistency of size at maturity 
in the population (Armstrong & Brooks, 2013) means that the size- 
related increases in survival are almost entirely attributable to in-
determinate growth. It is also important to reiterate that our model 
accounted for the potential confounding effects of individual quality, 
often referred to as frailty (Cam et al., 2016) or selective appearance 
and disappearance (Zhang, Vedder, Becker, & Bouwhuis, 2015), so 
the observed correlation appears to reflect a true effect of size on 
survival. If such size- dependent survival is common in organisms with 
indeterminate growth, then it suggests a hitherto overlooked bene-
fit of this trait. Indeed, theoretical models have been developed that 
incorporate indeterminate growth and allow size- dependent adult 
survival (Jørgensen & Fiksen, 2006; Taborsky et al., 2003), but to our 
knowledge these models have never been used to explore how this 
size- dependent survival affects model predictions. Our study argues 
for the inclusion of positive size- dependent survival into theoretical 

F IGURE  5 Annual variation in mean growth rate, mean clutch 
mass and annual survival probability of adult female snapping turtles 
in Algonquin Park, Canada. Estimated clutch masses and survival 
probabilities are for a 24- cm female. Vertical bars show 95% credible 
intervals
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models of indeterminate growth by providing direct empirical  evidence 
in support of this assumption.

Given the many fitness advantages associated with indeterminate 
growth, we reiterate Ejsmond et al. (2015: E121) and underscore the 
question “Why does indeterminate growth so often not exist?” One 
contributing factor may be that many animal species are not long- lived 
enough to experience fitness benefits of indeterminate growth, espe-
cially if rate of indeterminate growth must be suppressed to avoid af-
fecting current survival or reproductive success. A key feature of many 
life- history models is indeed that rapid growth reduces current fitness 
(Dmitriew, 2011; see also Lee, Monaghan, & Metcalfe, 2012a,b), and 
although we did not detect this trade- off in this study, this does not 
mean that fast- growing turtles would not experience reduced fitness if 
all else is could be held equal. Importantly, trade- offs can be obscured 
by individual variation in resource acquisition (van Noordwijk & de 
Jong, 1986).

The amount of individual variation in asymptotic size, growth rate 
and clutch mass is striking. Given the huge differences in lifetime re-
production associated with the individual variation in growth rates, 
this variation is probably largely due to environmental conditions ex-
perienced (Cressler, Bengtson, & Nelson, 2017), either during early life 
such as the incubation environment (Dufty, 2002) or resource avail-
ability in habitats used later (Reznick, Nunney, & Tessier, 2000). The 
snapping turtles in our study area differ in their local habitats within 
a complex system of lakes, rivers and swamps, although such differ-
ences are difficult to quantify. However, in our analysis we did con-
trol for the direct effects of current body size and year of observation 
on survival and reproduction, so the estimated individual variation is 
 attributable to either environmental or genetic differences.

Regardless of the source of individual variation, it could potentially 
affect the dynamics of long- lived reptile populations. As illustrated by 
this study, populations may be made up on individuals that vary dra-
matically in their expected longevity and reproductive contributions 
due to variation in growth trajectories and reproductive output. Such 
variation is ignored in the stage- based matrix models traditionally 
applied to long- lived reptiles, where animals are divided into a small 
number of size- based stages and transition probabilities between 
stages assumed to be constant (Crouse, Crowder, & Caswell, 1987). 
Such models are currently being used to predict the long- term fates 

of turtle populations threatened by harvesting, road mortality and 
pollution (Crawford, Maerz, Nibbelink, Buhlmann, & Norton, 2014; 
Folt, Jensen, Teare, & Rostal, 2016; Salice, Rowe, & Eisenreich, 2014; 
Zimmer- Shaffer, Briggler, & Millspaugh, 2014). Although it is import-
ant to exclude unnecessary detail from population models (Caswell, 
1988; Starfield, 1997), it is possible that individual variation could 
significantly alter the dynamics of populations, although the empirical 
evidence for this is currently tentative (Cressler et al., 2017; Kendall 
& Fox, 2002; Lindberg, Sedinger, & Lebreton, 2013; Vindenes, Engen, 
& Sæther, 2008). It would be useful to determine whether an under-
standing of individual variation is essential for predicting the dynamics 
of long- lived reptile populations under threat. Most importantly, the 
growth and persistence of many populations could potentially be de-
pendent on the best- performing individuals in terms of growth and 
reproductive output. If these individuals are products of particular en-
vironments in terms of development or long- term habitat use, then 
these will be the most important environments to protect.
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